
Internship report
Scanning Modern Web Applications with OWASPZAP

Xavier Maso

May 2018 - August 2018



Acknowledgements

I would like to express my gratitude to Mozilla for having me this summer to learn
about and work on the rather new field of ”client-side web security”; it was a great
chance to do research and development on this subject.

I take this opportunity to express my deepest thanks to my mentor Simon Bennetts,
whom, despite being busy with his duties, has always been present to listen, help and
guide me; his time, his patience and his advices take a huge part in the success of my
internship.

I am grateful to the Firefox Operations Security and ZAP teams, for trusting me to
be part of their group, their efforts to introduce me to their work and their will to make
me learn as much as possible.

I express my special thanks to Thomas Wisniewski and Mark Goodwin, from respec-
tively the Web Compatibility and the Crypto Engineering teams, whom without their
work and their help, I would never have been able to go as far as I did.

At last, I am very grateful and consider myself lucky to have been surrounded by
wonderful and supportive people at all times, in particular in the London office; all
Mozillians play a huge role in what makes this company such a great place to work.

Hope to meet all of you again in the future,

2



Contents

1 ZAP and ”modern” web applications 5
1.1 OWASP ZAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 ”Modern” web applications . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 DOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Our work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 The FrontEndScanner 10
2.1 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Same-origin policy (SOP) . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Content Security Policy (CSP) . . . . . . . . . . . . . . . . . . . . 11

2.2 The ”Client-side JavaScript code” . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 The ”frontEndScanner” object . . . . . . . . . . . . . . . . . . . . 11
2.2.2 User defined scripts . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 The front-end-tracker 14
3.1 ”Missing” features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 DOM events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 DOM mutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Interactions with storages . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.4 XMLHttpRequest (XHR) calls . . . . . . . . . . . . . . . . . . . . 15
3.1.5 postMessage calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 The mailbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 The library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.1 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 JavaScript modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.3 Node Package Manager (npm) . . . . . . . . . . . . . . . . . . . . 19
3.3.4 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3



Introduction

In the last couple of years, the landscape of web development has drastically changed.
Web applications used to rely heavily on the back-end side, web servers, to host their
logic and data. Nowadays, it is common to see the front-end side, web browsers, perform
some of the tasks the former exclusively did.

As a result, new kind of vulnerabilities have made their apparition and have already
had some dramatic consequences. Old techniques and tools to do security testing of web
applications are not as relevant as they used to be, and need an update to carry the
work they used to accomplish.

And that is exactly why I was working at Mozilla for the summer: enhance the Zed
Attack Proxy (ZAP), an open source security tool they use internally to test the security
of some of their applications. Our main goal was to help ZAP handle better what we
called ”modern” web applications.

In this report, I will present the work that has been carried out during these twelve
weeks of internship to achieve this.

Firstly, I will talk about ZAP, the tool that we (me and the team) have been working
on. I will take some time to give a bit of background on how it is used in the wild
and present basic concepts that we leveraged when building the new features that we
expected to bring to the field. Then, I will discuss our definition of ”modern” web
applications, and talk about the problems they introduce in terms of security testing,
particularly what make them so difficult to test with ZAP (or any other security tools)
as for now.

In the second chapter, I will present the first big milestone of our effort: coming
up with an innovative way for testers to run checks in the client-side using our proxy.
We proposed a solution for them to write scripts, that ZAP will inject in the targeted
application’s web pages as those ones transit from the server to the web browser. Hope-
fully, our design is flexible enough to ease later development, especially the additions of
features to allow more automation.

At last, I will take a look at a library that we wrote, to help analyze modern applica-
tions. Despite being one of the critical piece of the work I present in the second chapter,
it is meant to be a standalone component that could be used by other tools.

4



1 ZAP and ”modern” web applications

1.1 OWASP ZAP

The Open Web Application Security Project (OWASP)1 is an online community pro-
ducing tools, tutorials and guides in the field of web application security.

The Zed Attack Proxy (ZAP)2 is an open-source project written in Java related to
this community. Actively developed by a core team of five members, it has had more
than a hundred and twenty contributors3.

As its name suggests, ZAP is a web application proxy, and it is meant to help the
security testing of such applications.

1.1.1 Usage

The ”traditional” way of using a web application proxy is to make it sit between a
web browser and a server hosting the application that is targeted.

By doing so, the proxy can then eavesdrop on the HTTP traffic generated when the
user interacts with the application. Furthermore, it even allows him to tamper with
requests and responses or replay them.

These features enable ZAP users to perform different kind of testing, aiming to ensure
that the transiting content is secure, but also to try to exploit vulnerabilities on the
server as well as on the client-side.

1.1.2 Concepts

To validate the security of the watched content, ZAP performs different checks on
it. Those checks usually consist of trying to recognize patterns and signatures aiming
to detect the use of insecure parameters or known vulnerabilities in the HTTP traffic.
Either such content comes from ”legitimate” snooped traffic, or comes from after ZAP
initiated it itself (by sending crafted requests for example).

This process of validating security and looking for known vulnerabilities in an auto-
mated way is called scanning.

The rules describing what to look for and how to do it during the scanning of web
applications are expressed via scripts.

1https://www.owasp.org/
2https://www.owasp.org/index.php/ZAP
3Refer to https://www.openhub.net/p/zaproxy/contributors/summary for more details.

5

https://www.owasp.org/
https://www.owasp.org/index.php/ZAP
https://www.openhub.net/p/zaproxy/contributors/summary


1 ZAP and ”modern” web applications

By default, ZAP supports the following two languages to express scripts: JavaScript
(using the Nashorn engine) and Zest4, but it can as well support others (Ruby and
Python for example) via add-ons installation.

Some scripts are included by default in ZAP, while others can be installed (via these
add-ons, or from other sources). Users are free to write their own as well, and define
whenever (under which conditions) those should be active or not. There exist a repos-
itory of such ”user defined scripts”, written by the community, and made available at
https://github.com/zaproxy/community-scripts.

Generally speaking, we can distinguish two types of scripts and thus, two types of
scanning: passive and active.

”Passive scanning does not change the requests nor the responses in any way and is
therefore safe to use.” 5 In other words, passive scanning performs ”read-only” lookups
over the traffic to recognize the use of insecure parameters or vulnerabilities.

”Active scanning attempts to find potential vulnerabilities by using known attacks
against the selected targets.” 6 It could as well be named ”proactive” scanning, with
ZAP tampering with the content, at the risk of disrupting the usual behavior of the
targeted application.

To notify the user when it finds something, ZAP creates alerts. ”An alert is a potential
vulnerability and is associated with a specific request”7; it is made of several fields,
among which: its description, the evidence that the reported vulnerability is present in
the application, the level of risk associated with it (how critical is the vulnerability), and
the level of confidence (the likeliness for it to be a false positive or not).

At last, one way for users to extend ZAP functionalities is by using (or writing) add-
ons8.

They can be installed via the ”marketplace”9, which exposes the available ones from
the repository: https://github.com/zaproxy/zap-extensions, maintained by
the ZAP core team, and on which the community contributes.

For the most adventurous of us, it is possible to write such add-ons. They can make
use of ZAP internals to create very powerful features, and, once passed the community
review process, can be added to the ”zap-extensions” repository, and be made available
on the marketplace for other users to install.

4”Zest is an experimental specialized scripting language [...] developed by the Mozilla security team and
is intended to be used in web oriented security tools.”. Source: https://developer.mozilla.
org/en-US/docs/Mozilla/Projects/Zest.

5Source: https://github.com/zaproxy/zap-core-help/wiki/HelpStartConceptsPscan.
6Source: https://github.com/zaproxy/zap-core-help/wiki/HelpStartConceptsAscan.
7Source: https://github.com/zaproxy/zap-core-help/wiki/HelpStartConceptsAlerts
8Source: https://github.com/zaproxy/zap-core-help/wiki/
HelpStartConceptsAddons.

9An element of ZAP’s graphical interface.

6

https://github.com/zaproxy/community-scripts
https://github.com/zaproxy/zap-extensions
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Zest
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Zest
https://github.com/zaproxy/zap-core-help/wiki/HelpStartConceptsPscan
https://github.com/zaproxy/zap-core-help/wiki/HelpStartConceptsAscan
https://github.com/zaproxy/zap-core-help/wiki/HelpStartConceptsAlerts
https://github.com/zaproxy/zap-core-help/wiki/HelpStartConceptsAddons
https://github.com/zaproxy/zap-core-help/wiki/HelpStartConceptsAddons


1 ZAP and ”modern” web applications

By leveraging the concepts presented up until now, we have now a clearer understand-
ing of what a web application penetration testing session might look like. The security
tester (the ZAP user) set up ZAP to be between the browser and the server serving the
application he is testing. He can make use of custom scripts and add-ons to help him
look for particular vulnerabilities. If such vulnerabilities are spotted in the application,
alerts will be reported and displayed for the tester to investigate.

1.2 ”Modern” web applications

Traditionally, the logic of web applications (the rules describing their behavior) used to
be hosted on the server side only; and the users of such applications would communicate
with it by making HTTP requests to read data and perform changes.

In the last few years, mostly because of the increasing computing power of client ma-
chines, more and more of web applications started to have (and sometimes to delegate)
part of their logic to the client-side. We use the term ”modern” to identify such applica-
tions. They were able to do so thanks to JavaScript, a twenty-two years old programming
language interpreted by web browsers, which was aimed to be a scripting language for
the web, allowing for example to create dynamic web pages.

Because the browser is now hosting some of the application’s logic (such as naviga-
tion, or data validation in some cases), and might contains interesting data (such as
authentication credentials for example), it is necessary to be able to audit this part as
well from the security point of view.

However, by proceeding how we did so far (placing our proxy between the browser and
the server hosting the targeted application), we are limited in what we can achieve and
find on the client-side; and thus making it difficult to scan ”modern” web applications
with the tools and methods available to us up until now. Indeed, analysis of the HTTP
trafic only allows static research of weak points. On another hand, tampering or replay-
ing such trafic is fine to trigger ”measurable” behavior on the server side, but is most
of the time inefficient when looking for client-side vulnerability, due do the environment
in which the application runs in there, where it intakes several sources of input (user
interactions, networking, etc.), coupled to the dynamic nature of JavaScript.

To understand better at which extent this is problematic, we need to take a look
at the JavaScript language, and at the representation of web pages interactions on the
client-side: the Document Object Model (or DOM).

1.2.1 JavaScript

JavaScript is the most well-known implementation of the ECMAScript specification,
and is supported by all major web browsers. Any of them embed an engine to interpret

7



1 ZAP and ”modern” web applications

the language, amongst the most famous are SpiderMonkey, V8, Chakra, and JavaScript-
Core respectively for Firefox, Google Chrome, Internet Explorer / Edge, and Safari)10.

JavaScript is a weakly typed, prototype-based, high level, interpreted language; but
more importantly, it is its dynamic nature that makes it difficult to analyze statically:
in particular because that new code can be added at runtime11. And this is especially
troublesome in an environment with a lot of external inputs: the web browser.

1.2.2 DOM

”When a web page is loaded, the browser creates a Document Object Model of the
page, which is an object oriented representation of an HTML document, that acts as an
interface between JavaScript and the document itself and allows the creation of dynamic
web pages”12.

Via this interface, JavaScript can then perform different kind of manipulations to the
page: adding, modifying or removing HTML elements, react to events or create new
ones.

These events management, done via the Event interface, is particularly interesting: it
allows scripts to execute behavior in response of things happening during the life of a
web page. Some of these events are generated by user interactions: mouse, keyboard
or form, while others are generated by APIs: resource, network, etc. An exhaustive list
of existing DOM events is available on MDN: https://developer.mozilla.org/
en-US/docs/Web/Events. Another interesting usage of the Event interface is the
creation of custom events to tie a specific behavior to. With such a mechanism, one can
write a reactive application: creating custom events to be emitted on certain conditions
and trigger a specific behavior when that happen.

Getting back to our need of scanning web applications for client-side vulnerabilities,
we can now see why this is troublesome for the two methods we have: scanning the
HTTP response for known issues, and injecting content aiming to trigger something in
the browser.

The scanned HTTP response contains HTML, as well as JavaScript (as we are talking
about ”modern” web applications). The first will be interpreted by web browsers to cre-
ate the DOM representation they use. The latter will be interpreted as well, potentially
leading to ”direct” modifications of this DOM; or can create event listeners, which could
lead to such DOM modifications, or at least make it difficult to keep track of what can
happen in a page as it would depend on external input (user generated or not).

For example, one common use case (meant to speed up the load of a page) is to load
data asynchronously, and then creates HTML elements containing this new content to
be displayed.

In the end, our static analysis will miss most of the behavior that requires interactions
to happen, and injecting content hoping to see an outcome in the browser would be

10https://en.wikipedia.org/wiki/JavaScript
11Ibid.
12https://en.wikipedia.org/wiki/Document_Object_Model

8

https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Document_Object_Model


1 ZAP and ”modern” web applications

naively optimistic as some really complex chain of events can be required for sources of
vulnerabilities to appear on the page.

1.3 Our work

We wanted to enhance ZAP to be able to scan ”modern” web applications. To answer
the problematics previously discussed, we articulated our work around two ideas that
will be presented in the next two chapters of this document.

The first one was to provide a way for security testers to run scripts in the browser
and for those to be able to report informations back to ZAP. We need these scripts to
run ”alongside” targeted applications, or, in other words, with the ability to manipulate
the same DOM and access the same data (having the same origin) than these. Our
solution for that was to develop a ZAP add-on named the FrontEndScanner, which
inner working will be presented in the next chapter.

Secondly, we wanted to enhance the API available in the browser for the scripts to
be able perform ”security related” actions. Indeed, the DOM and ECMAScript speci-
fications are meant to solve web developers’ needs, but do not provide the features we
expect for debugging and even less for security testing. To be fair, we should mention
the WebExtensions API, available for browser extensions developers, as this API provide
interesting features for our use case. However, WebExtensions still lack of cross-browser
compatibility: originally based on Google Chrome Extension API, the ensuing standard
specification is still a draft13, which Firefox has not yet completely implemented. This
would have forced us to write and maintain plugins for each browser we wanted to sup-
port; and worse, it would have required our users to install extensions to their browsers,
which some of them simply cannot do. In the end, our solution took the form of a
JavaScript library named the front-end-tracker to add these ”missing” tools. Once
injected in a web page, all scripts can take advantage of the functionalities it exposes,
in particular ZAPscripts, thanks to the FrontEndScanner.

13It can be consulted at the following address: https://browserext.github.io/browserext/.

9

https://browserext.github.io/browserext/


2 The FrontEndScanner

As discussed in the previous chapter, we needed a mean for our users (pentesters) to
be able to look for client-side vulnerabilities by running scripts in the browser. There,
we wanted those scripts to have access to the same DOM than the targeted application,
and the permission to query the same data.

To answer that, we produced the FrontEndScanner ZAP add-on.

2.1 Presentation

When installed and enabled, it tampers with all HTTP responses passing through ZAP
to inject a piece of JavaScript code containing custom logic, utility functions and scripts
that our users wish to run in the browser. For the user scripts to be executable there,
and to leverage the DOM API, we decided that they should be written in JavaScript,
and injected as is into responses.

2.1.1 Same-origin policy (SOP)

”Under the policy, a web browser permits scripts contained in a first web page to
access data in a second web page, but only if both web pages have the same origin. An
origin is defined as a combination of URI scheme, host name, and port number.”1

The SOP is enforced by web browsers and is implemented to prevent malicious pages
to access sensitive data contained in other web pages they do not share the origin with.
One common example of such sensitive data would be HTTP cookies, used to maintain
authenticated user sessions via a stored secret value that only the authenticated client
knows; if any other web page loaded in the browser could access this data, they would
have a valid user session on the first page. For example, as an attacker, one could gain
access to a user’s session on banking.com by making them load a page under his
control (let’s say evil.com), and that would be problematic.

One advantage that we automatically gain by injecting our piece JavaScript directly
into the HTTP response is that we do not have to worry about the SOP. Indeed, with
our add-on, our JavaScript code ends up between the <head> and </head> tags of the
document, and then the browser will interpret all the new content as being part of the
targeted domain. For the browser, ZAP scripts will then look like any legitimate scripts
from the website, and thus have the ability to perform the same actions and to have
access to the same data.

1Source: https://en.wikipedia.org/wiki/Same-origin_policy.

10

banking.com
evil.com
https://en.wikipedia.org/wiki/Same-origin_policy


2 The FrontEndScanner

2.1.2 Content Security Policy (CSP)

”Content Security Policy (CSP) is a computer security standard introduced to prevent
cross-site scripting (XSS), clickjacking and other code injection attacks resulting from
execution of malicious content in the trusted web page context. [...] CSP provides a
standard method for website owners to declare approved origins of content that browsers
should be allowed to load on that website.” 2

As the previous one, this policy is enforced by web browsers. They do so by following
the declaration sent by the website via the ”Content-Security-Policy” header in the
HTTP response. One common usage of it is to disallow inline JavaScript (contained
in attributes of HTML elements or between <script></script> tags), to refuse the use
of dynamic code evaluation (via the use of eval or new Function), and to specify from
which origins to allow content from (allowing the load of resources from a CDN for
example).

Unfortunately, our approach does not work straightaway for websites including a CSP
that disallows inline JavaScript, because ZAP adds the code in the page between <

script></script> tags. It is necessary for now to remove the CSP header from HTTP
responses3. However, two issues have been raised in the ZAP repository: ”Automatically
manipulate CSP for it to work”4 and ”Do not inject inlined JavaScript”5 and we hope
to solve this problem with a more graceful solution.

2.2 The ”Client-side JavaScript code”

So far, we have looked into what happen when HTTP responses pass through the proxy
with our add-on enabled before being sent back to the browser: a piece of JavaScript
code is injected inside the <head></head> tags. In this section, we will present a bit more
in details what this JavaScript code is made of, and why.

2.2.1 The ”frontEndScanner” object

The first key element to understand what is happening in the Client-side JavaScript
code is the frontEndScanner object.

In JavaScript, objects are maps of key-value pairs. Keys are often called ”properties”
of the object; however, when a value associated with a key is a function, we prefer the
term ”method”.

The current implementation of the frontEndScanner object contains two properties
and one method, respectively:

2Source: https://en.wikipedia.org/wiki/Content_Security_Policy.
3For example, by using one of the community script, available at the fol-

lowing address: https://github.com/zaproxy/community-scripts/blob/
75433c6253853560fa0eca4ec3fbc26b077b2e4f/proxy/RemoveCSP.zst.

4https://github.com/zaproxy/zaproxy/issues/4893
5https://github.com/zaproxy/zaproxy/issues/4894

11

https://en.wikipedia.org/wiki/Content_Security_Policy
https://github.com/zaproxy/community-scripts/blob/75433c6253853560fa0eca4ec3fbc26b077b2e4f/proxy/Remove CSP.zst
https://github.com/zaproxy/community-scripts/blob/75433c6253853560fa0eca4ec3fbc26b077b2e4f/proxy/Remove CSP.zst
https://github.com/zaproxy/zaproxy/issues/4893
https://github.com/zaproxy/zaproxy/issues/4894


2 The FrontEndScanner

• ZAPconstants to help scripts create alerts.

• The ”mailbox”: a ”publish-subscribe” object for scripts to react to interesting
events happening in the web page.

• An utility function to report alerts back to ZAP.

ZAP constants

As presented in the first chapter, each alert has a risk and a confidence property, both
are mandatory for it to be valid in ZAP. Those properties are enumerated types6, and
thus have a set of predefined possible values. These values, held in the frontEndScanner

.zapAlertConstants property, which scripts have access to, need to be used when they
create alerts that are valid from ZAP’s point of view.

The ”mailbox”

We will dive more in the details of the inner working of the mailbox (and which
problem it solves) in the next chapter. For now, let’s see it as an handy object which
scripts can subscribe to, allowing them to react to what would be posted on it: events
that are interesting from a debugging and security perspective7. It is accessible via the
frontEndScanner.mailbox variable.

Report function

At last, the frontEndScanner object exposes a way for scripts to report their findings
to be registered in ZAP.

The way for the Client-side JavaScript code to communicate with ZAP is via the ”ZAP
callback URL”, which has the following format: <targeted domain name>/zapCallBackUrl

/<random value>. The random value is unique and generated by ZAP, and is made
known to the client side by being written during the injection.

When they pass through ZAP, HTTP requests for these URLs are intercepted and
not forwarded. The random value from the URL is compared to what ZAP is expecting,
and the request is not processed if they do not match. This is a security mechanism
to prevent malicious pages to exploit ZAP. It is important for this random value not to
be leaked by being accessible from other scripts on the target domain, and we do so by
enclosing it in our report function8. One nice side effect of this mechanism is that, from
the browser perspective, requests to the ”ZAP callback URL” fall completely under the
SOP.

Another information enclosed in the function, and that is used to craft valid alerts
from ZAP’s perspective is the ”historyReferenceId”. ZAP relates alerts to the HTTP

6See: https://en.wikipedia.org/wiki/Enumerated_type
7That could be notifications when DOM events are triggered, when storages are accessed, when the

DOM is mutated, and so on.
8See: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures.

12

https://en.wikipedia.org/wiki/Enumerated_type
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures


2 The FrontEndScanner

requests and responses it analyzes. If one of the user scripts find a vulnerability in the
web page it is analyzing, and wants to report it to ZAP, it needs to associate it with
the corresponding HTTP exchange, which it cannot do without this historyReferenceId.
Because it does not have the overview of the process, it needs to get this information
from ZAP; and again, this is done as part of the injected Client-side JavaScript code.

In the end, our function has everything it needs to report individual alerts to ZAP, by
passing them as an object parameter: frontEndScanner.reportAlertToZap(alertData).

2.2.2 User defined scripts

Another big aspect of the Client-side JavaScript code is that it contains all the scripts
that a user wishes to run in the targeted page.

Thanks to the ”Scripts” add-on included by default in ZAP, users have access to
different pre-defined scripts, and can even write their own. From the script pane, they
can enable or disable them based on the actions they want to be performed. Depending
on their type, scripts are run under different circumstances9.

Because there was no way to run ZAP scripts in the browser before, there was no
existing type representing ones that would. Therefore, we introduced two new types
of scripts: ”Client side Passive Scan scripts” and ”Client side Active Scan scripts”.
They are similar to the existing ”Passive Scan scripts” and ”Active Scan scripts” types,
except they are meant to be run in the browser. In that sense the ”active” one designates
scripts that interacts with the application and can potentially alter its content, while
the ”passive” type should not10.

By default, only the enabled client-side passive scripts are injected in the HTTP
response. Each of the injected script is injected into the body of a JavaScript function,
which one takes the frontEndScanner object we presented earlier as a parameter; the
function names are stored in an array for referencing. Thanks to this implementation,
each script can make use of the ZAP constants, the mailbox and the report function we
described earlier.

At last, the Client-side JavaScript code calls every one of these functions, resulting in
the execution of users scripts in the targeted application. Voilà!

9See: https://github.com/zaproxy/zap-core-help/wiki/HelpAddonsScriptsScripts#
script-types for more types and information.

10We would prefer to be writing could not, but so far, there is nothing implemented that enforces the
differentiation between the two.

13

https://github.com/zaproxy/zap-core-help/wiki/HelpAddonsScriptsScripts#script-types
https://github.com/zaproxy/zap-core-help/wiki/HelpAddonsScriptsScripts#script-types


3 The front-end-tracker

The previous chapter described how we gave ZAP users the ability to run scripts in
the browser, alongside the application they are testing. However, we found that the
browser lacked the features for the scripts to be able to test ”modern” web applications
to their full extent.

3.1 ”Missing” features

Here are a couple of examples of what we would like scripts users to have access to,
or be able to do. How we implemented the answer to these needs will be presented in
the following section.

3.1.1 DOM events

Modern web applications rely a lot on DOM events to interact with users. By creating
listeners, they can hook events to functions, which will be run when the former occur.

For example, imagining that there is an HTML element in the page with the id an-

id, the following code will end up writing a message to the console every time a click
happens on it.

var element = document.getElementById(’an-id’);
element.addEventListener(’click’, function (event) {

console.log(event + ’ happened’);
});

As mentioned in the first chapter, in ”modern” web applications, some complex chain
of interactions might be necessary for the source of a vulnerability to appear (for example,
a click on a ”Log In” button leading to the apparition of an <input> tag, subject to an
SQL injection). Before being able to automatically replay those interactions, we would
need first to remember them. To do so, we would like to be notified when those events
are triggered during the lifetime of the application.

3.1.2 DOM mutations

Another thing that ”modern” applications do a lot is mutating the DOM. Indeed,
instead of resending an HTTP request to update the content from an HTTP response
(which takes a lot of time), they use JavaScript to manipulate the loaded DOM to change

14



3 The front-end-tracker

pieces of the HTML tree. So, they can remove, add or modify almost any (if not all)
HTML elements or their attributes.

In the case of the example presented earlier, detecting the creation of the <input>

element and recognizing it as an ”interesting thing” (the apparition of a potential source
of vulnerability) is a necessary step before testing any kind of injection on it. More
generally, we would like to be notified when anything that takes input from users of the
application appears in the page.

3.1.3 Interactions with storages

To persist data directly in the browser, web pages scripts can use the ”sessionStorage”
and the ”localStorage”. They both can be accessed via the Storage interface1.

From a security perspective, we want to be able to detect whenever those storages are
accessed, in particular when secrets are stored (such as JWT2).

3.1.4 XMLHttpRequest (XHR) calls

XHR3 helps applications query data asynchronously; again, it avoids the overhead of
having a full HTTP exchange when only a piece of the web page needs to be updated.
Nowadays, XHR is a very common way to pull down data from a web server exposing
an HTTP API.

By monitoring such exchanges, we could detect when data is transferred between the
front-end and the back-end of an application. That could lead to learn secrets, or just
knowledge about the structure of it: the format of data it manipulates, the features it
exposes, and so on.

3.1.5 postMessage calls

”postMessage” is a method exposed by the ”Client” interface4; it is a mechanism with
which pages can communicate between themselves. To watch over the communications
of our application, it could be interesting to inspect messages entering and leaving it.

To react to messages, a ”Worker”5, a ”SharedWorker”6 or a ”Window”7 use the ”ad-
dEventListener” mechanism presented earlier to hook to the ”message” event. Because
of that, the reception of messages will be dealt with by dealing with DOM events in
general.

In the end, we still need a way to monitor calls to ”postMessage”.

1See: https://developer.mozilla.org/en-US/docs/Web/API/Storage.
2Json Web Tokens, often used as a proof of identity to maintain an authenticated user session. See
https://jwt.io/ for more informations.

3See: https://developer.mozilla.org/en-US/docs/Glossary/XHR_(XMLHttpRequest).
4See: https://developer.mozilla.org/en-US/docs/Web/API/Client/postMessage.
5See: https://developer.mozilla.org/en-US/docs/Web/API/Worker.
6See: https://developer.mozilla.org/en-US/docs/Web/API/SharedWorker.
7See:https://developer.mozilla.org/en-US/docs/Web/API/Window.

15

https://developer.mozilla.org/en-US/docs/Web/API/Storage
https://jwt.io/
https://developer.mozilla.org/en-US/docs/Glossary/XHR_(XMLHttpRequest)
https://developer.mozilla.org/en-US/docs/Web/API/Client/postMessage
https://developer.mozilla.org/en-US/docs/Web/API/Worker
https://developer.mozilla.org/en-US/docs/Web/API/SharedWorker
See: https://developer.mozilla.org/en-US/docs/Web/API/Window


3 The front-end-tracker

And what else we did not think yet about!

3.2 Implementation

Ideally, we need a way to report when these features are called, without interrupting
them. By taking advantage of the functional nature of JavaScript, especially the fact
that functions are first-class citizens8, we were able to do so with what we called hooks.

3.2.1 Hooks

Hooks are the way by which the standard behaviors we have presented in the previous
section (DOM events, Storage interactions), are wrapped into custom functions written
by us. By doing so, we can intercept when those features are called, do some kind of
reporting (or even modification) before triggering the expected behavior.

In the current implementation, our custom function does a couple of things:

1. It prevents the default behavior from happening9.

2. It reports the called function and the arguments that has been passed to it by
posting to the mailbox (more on that later).

3. It calls the function, with the original parameters.

4. It recreates and dispatches10 the event in the case its default behavior had been
prevented.

Here is what it would look like, for example to wrap the getItem11 function from the
Storage interface. For the sake of the example, the code has been simplified to be more
explicit.

const oldGetItem = Storage.prototype.getItem;

Storage.prototype.getItem = function (...args) {
mailbox.publish(

5 ’storage’,
{action: ’get’, args: args}

);
return oldGetItem(...args);

}

8Source: https://en.wikipedia.org/wiki/Javascript#Functional.
9This is mandatory as some behaviour would break the reporting. For example clicks on <a>...</a>

pointing to a different origin would make the window loads another page, and our asynchronous
reporting would sadly never be called.

10See: https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/
dispatchEvent.

11See: https://developer.mozilla.org/en-US/docs/Web/API/Storage/getItem.

16

https://en.wikipedia.org/wiki/Javascript#Functional
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/dispatchEvent
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/dispatchEvent
https://developer.mozilla.org/en-US/docs/Web/API/Storage/getItem


3 The front-end-tracker

The hook for DOM events wraps ”addEventListener” from the ”EventTarget” inter-
face12. By doing so, we can make sure that every time a behavior is bond to a script, it
gets changed to inject some reporting code around the expected behavior.

The hook for Storage wraps ”getItem”, ”setItem” and ”removeItem” from the ”Stor-
age” interface13 Again, this ensures that every time a script interacts with any storage,
we will know it.

Unfortunately, we did not have the time to implement all the hooks that we hoped
to14. So far only the ones for DOM events and Storage are available, and therefore, the
hooks for DOM mutation, XHR and postMessage are still missing.

However, the problems that we are trying to solve, and the way we wanted to tackle
them are really similar to what the web compatibility team at Mozilla want to deal with
their ”tinker-tester-developer-spy” plugin15.

Most of the heavy lifting has been done on their side, and even though integration is
not trivial16, the hooks to deal with DOM mutations and XHR calls are already working
in their plugin.

3.2.2 The mailbox

The mailbox is the core of the reporting capability of the front-end-tracker. It is a
”publish-subscribe” object: wrappers created by hooks will publish messages to it (as
shown in the previous dummy example), and whichever script in a web page can subscribe
to it, as it is exposed as a global variable in the window. Furthermore, the mailbox is
”topic based” means each message is assigned a topic (as a String), so subscribers can be
notified only when messages under a topic that interest them is posted to the mailbox.

Subscribing to the mailbox means binding a function to the reception of a message of
a given topic. For example, one can log DOM events’ information by subscribing to the
”dom-events” topic, and calling the JavaScript printing function on the received data,
as shown in the following code:

const topic = ’dom-events’;
2 mailbox.subscribe(topic, function (_, data) {

console.log(data);
});

12See: https://developer.mozilla.org/en-US/docs/Web/API/EventTarget.
13See: https://developer.mozilla.org/en-US/docs/Web/API/Storage.
14You can see the current availabel hooks at the following address: https://github.com/zaproxy/

front-end-tracker/tree/master/src/hooks.
15Meant to help web developers to debug the web applications for compatibility issues. Available at the

address: https://github.com/webcompat/tinker-tester-developer-spy.
16As it requires a very powerful technique from a developer’s arsenal: copy pasting code from a project to

another. It has been documented here: https://github.com/zaproxy/front-end-tracker/
wiki/Hooks#create-and-update, and an issue to find a more elegant solution has been raised:
https://github.com/webcompat/tinker-tester-developer-spy/issues/13.

17

https://developer.mozilla.org/en-US/docs/Web/API/EventTarget
https://developer.mozilla.org/en-US/docs/Web/API/Storage
https://github.com/zaproxy/front-end-tracker/tree/master/src/hooks
https://github.com/zaproxy/front-end-tracker/tree/master/src/hooks
https://github.com/webcompat/tinker-tester-developer-spy
https://github.com/zaproxy/front-end-tracker/wiki/Hooks#create-and-update
https://github.com/zaproxy/front-end-tracker/wiki/Hooks#create-and-update
https://github.com/webcompat/tinker-tester-developer-spy/issues/13


3 The front-end-tracker

3.3 The library

3.3.1 Constraints

As mentioned earlier in this document, ”modern” web applications rely heavily on
event listeners to build reactive applications. Recent frameworks and libraries will abuse
this mechanism as soon as they will be loaded in the page. To get relevant debugging
capabilities, it is important for our hooks to run before these scripts, so they can inject
debugging code (which role is to post relevant informations to the mailbox) when event
listeners are added.

Note that in the previous chapter, I explained that the FrontEndScanner add-on injects
the client-side JavaScript code in the <head></head> tags, on top of the page. This is
exactly for this reason: to make sure that it is the first script loaded and interpreted by
the browser.

ZAP lets users pick the browser of their choice when testing web applications... Or
almost. The team carries the effort of supporting only ”major” recent browsers, i.e the
latest versions of Mozilla Firefox and Google Chrome. We wanted it to stay like that,
so our front-end-tracker needs to be compatible with at least those two browsers.

I already mentioned in the course of the first chapter that we wanted to avoid develop-
ing browser extensions: the API did not seem mature enough, we preferred to maintain
a single tool and we wanted to avoid adding an extra installation step for ZAP users.
Furthermore, this would de facto eliminate all the browsers we did not write an extension
for from the list of our supported platforms.

3.3.2 JavaScript modules

In the browser, the way to add script functionalities is by loading them or writing
them inside <script></script> tags. One of the major downside of this approach is
that it pollutes the global namespace, as declared functions are attached to the window
scope. By doing so, it makes them ”public” as well, which is less than ideal if we want
the other scripts in the web page not to know some implementation details (such as a
secret random value used in the way we communicate with ZAP for example17).

Node.js18, has a notion of ”module”, which regroup a set of functions and data in an
object that can be imported in an application19 It has a nice explicit syntax to express
the load of modules in a script.

var module = require(’my-module’);

Example of module import in Node.js

17More details have been provided in the section 2.2.1.
18”An open-source, cross-platform JavaScript run-time environment that executes JavaScript code out-

side of a browser.”, source: https://en.wikipedia.org/wiki/Node.js
19See: https://www.w3schools.com/nodejs/nodejs_modules.asp.

18

https://en.wikipedia.org/wiki/Node.js
https://www.w3schools.com/nodejs/nodejs_modules.asp


3 The front-end-tracker

It is possible to simulate such a module system in the browser, by using what is called
”the module pattern”, which makes use of JavaScript objects and immediately-invoked
function expression20.

By using a module bundler21, it is possible to write scripts importing modules using
the Node.js require syntax, and have them working in the browser by transforming
them upfront to use the module pattern. Note that this does not happen at runtime: it
is a build step which result is then used in the browser.

3.3.3 Node Package Manager (npm)

”npm is the package manager for JavaScript”22, and it is possible for anyone to pub-
lish their code to their registry. Are called JavaScript packages the groupings of one
or more module(s) together for easier distribution. That is under this format that we
decided to release our front-end-tracker: by publishing it as a package on the npm reg-
istry, at the following endpoint: https://www.npmjs.com/package/@zaproxy/
front-end-tracker.

3.3.4 Usage

So, for an application to make use of the front-end-tracker, it just has to require(’

front-end-tracker’) after having installed it via npm. However, as mentioned, because
this is meant to be used in the browser, the code requiring our tool needs to be passed
through a module bundler for it to be transformed into a ”browser-interpretable” script,
that we often call the bundled version of the script.

For users that are not familiar with JavaScript build systems, we wanted to make
the front-end-tracker available on unpkg.com, a popular ”content delivery network for
everythin on npm”23. Unfortunately, we did not have the time to carry this task through
completion, but we hope to see the related issue24 answered in a near future.

There is a common case where one can not modify the targeted application code to
inject the front-end-tracker bundled script. It is common because ZAP users and security
testers in general often do not control applications they test, even less they own them.

In this situation, being able to arbitrarily inject the front-end-tracker into any web
page is needed. Before developing the FrontEndScanner for example, we expected to be
able to do exactly that to be able to test our front-end-tracker on popular websites.

20See: https://medium.com/sungthecoder/javascript-module-module-loader-module-bundler-es6-module-confused-yet-6343510e7bde#
6b16.

21See: https://stackoverflow.com/questions/38864933/what-is-difference-between-module-loader-and-module-bundler-in-javascript#
answer-42317497.

22Source: https://www.npmjs.com/.
23Source: https://unpkg.com/.
24See: https://github.com/zaproxy/front-end-tracker/issues/5.

19

https://www.npmjs.com/package/@zaproxy/front-end-tracker
https://www.npmjs.com/package/@zaproxy/front-end-tracker
unpkg.com
https://medium.com/sungthecoder/javascript-module-module-loader-module-bundler-es6-module-confused-yet-6343510e7bde#6b16
https://medium.com/sungthecoder/javascript-module-module-loader-module-bundler-es6-module-confused-yet-6343510e7bde#6b16
https://stackoverflow.com/questions/38864933/what-is-difference-between-module-loader-and-module-bundler-in-javascript#answer-42317497
https://stackoverflow.com/questions/38864933/what-is-difference-between-module-loader-and-module-bundler-in-javascript#answer-42317497
https://www.npmjs.com/
https://unpkg.com/
https://github.com/zaproxy/front-end-tracker/issues/5


3 The front-end-tracker

For that, we advised a solution and wrote a ZAPHTTP Sender script to add custom
JavaScript on top of any web page, and we made it available in the community scripts25.
By turning it on in ZAP, and using it to load the bundled front-end-tracker from a file,
one can tamper with any HTTP response passing through their proxy to add our beloved
tool to the HTML it contains.

In the end, despite being a central piece of the FrontEndScanner without which it
would not be as powerful, the front-end-tracker was designed and developed to be a
completely standalone component. Because of that, anyone can make use of it to help
them debug their own application.

25Available at the following address: https://github.com/zaproxy/community-scripts/
blob/master/httpsender/inject_js_in_html_page.js.

20

https://github.com/zaproxy/community-scripts/blob/master/httpsender/inject_js_in_html_page.js
https://github.com/zaproxy/community-scripts/blob/master/httpsender/inject_js_in_html_page.js


Conclusion

During these twelve weeks of internship, I worked on improving ZAP for it to be able
to handle ”modern” web applications, and their new paradigm. Indeed, to improve the
user experience of their application, more and more developers chose to write heavy
client containing business logic and data, which was exclusively hosted on the back-end
couple of years ago. What are called ”modern” web applications are these heavy clients,
which take the form of JavaScript applications, interpreted by web browsers.

With such a reshaping of web applications, security professionals need to update
their tools to 1. find new vulnerabilities that arose because new actors are involved (in
particular the web browser), 2. make sense of the logic of an application that is now
distributed between the back-end and frond-end.

In such an environment which takes several form of inputs and can have a lot of side
effects, predicting the flow of an application statically is impossible. Even with the
current way of doing things: ZAP injecting content as the requests and responses pass
by, triggering interesting behavior in the browser can be troublesome, as a complex set of
conditions may be necessary for it to occur. Our proposed solution for this problem was
to build a component to inject alongside applications, that will make use of the browser
API to have access to front-end data, and monitor interactions happening there. This
new ZAP feature has been released under the form of a ZAP add-on.

One required ability of our component was to be able to run scripts written by ZAP
users, to express checks to be run in the application, all in the browser. Furthermore,
we added some utilities functions exposed by our component for these scripts to be able
to interact with ZAP, in particular to report back vulnerabilities that would have been
found in the front-end side.

To help these scripts make sense out of the complex life of a modern web application
(user interactions, fetching data over the network, and so on), we created a JavaScript
library: the front-end-tracker, meant to expand the APIs available in the browser, es-
pecially to target debugging and security testing use cases. Because ZAP’s component
needs these functionalities for the scripts to be powerful, it is dependent on the library.
However, the library can be used in other contexts as well, and we released it individually
hoping this would be the case.

In the end, we made significant steps in the direction of a better tooling for web
applications security testers. Our ZAP add-on and JavaScript library allow them to
write security checks that would be performed directly in the browser, and that can

21



3 The front-end-tracker

understand and depend on all kind of inputs (whether it be user, storage, network, etc.)
by interacting with the APIs available here.

We hope our framework will be opening the door to a new generation of client-side
security scripts to detect automatically the presence of vulnerabilities in front-end ap-
plications.

Even though we only have implemented the structure to run passive (non interactive)
scripts, nothing prevents users to use the APIs available to tamper with data and be
disruptive. So, from a technical point of view, active scripts are already a thing in
our architecture; but we would prefer to enforce the distinction between the two kinds,
to avoid non power-users to make dramatic mistakes while testing their (or others)
applications.

Unfortunately, we lacked of time to deeply test and make an extensive use of what we
produced, but we still managed to provide enough documentation for anyone to start
consuming what we have done and even writing their own scripts.

Fortunately, we managed to create a proof-of-concept making use of what we produced.
It is a script, injected by ZAP alongside the application, that will be executed in the
browser; here, it takes advantage of the front-end-tracker to run verify every time data
is written to the storages if they contain credentials.

Overall, there is room for improvement.
The front-end-tracker could integrate more hooks to deal with DOM mutations or

network interactions (fetching data asynchronously is a popular pattern). With a bit of
time and effort, it could surely be made easier to install and use as well.

Even though we kept in mind that we wanted our add-on to be used in a fully auto-
mated environment, our implementation so far requires users to interact manually with
web pages. It would be interesting to see users scripts to run in a navigation session
driven by Selenium for example.

And obviously, the whole class of active scripts is interesting: once users make scripts
which interact with the application, allowing injections, tampering with data and so on,
they could start to detect code injections, modification of the flow of the application,
and what else.

Twelve weeks were a short time to produce everything we would have hoped to see.
Even though we put a lot of effort into building production ready content for ZAP, the
add-on could not be released yet; gladfully, it is not so far from being made available.

In the end, we defined and propose a new way to test the front-end side of web
applications, and we provided the basic tooling to start doing it this way. We are
looking forward to see how the community will react to this, the kind of use testers will
make of it, and what kind of improvements they will bring.

22


	ZAP and "modern" web applications
	OWASP ZAP
	Usage
	Concepts

	"Modern" web applications
	JavaScript
	DOM

	Our work

	The FrontEndScanner
	Presentation
	Same-origin policy (SOP)
	Content Security Policy (CSP)

	The "Client-side JavaScript code"
	The "frontEndScanner" object
	User defined scripts


	The front-end-tracker
	"Missing" features
	DOM events
	DOM mutations
	Interactions with storages
	XMLHttpRequest (XHR) calls
	postMessage calls

	Implementation
	Hooks
	The mailbox

	The library
	Constraints
	JavaScript modules
	Node Package Manager (npm)
	Usage



